Kashiwara Crystals of Type A in Low Rank

Ola Amara-Omari, Malka Schaps

Bar-Ilan University

ICERM: Combinatorics and Representation Theory
July, 2018
Table of Contents

1. Affine Lie algebras of Type A
2. Crystals of Type A
3. Canonical basis
4. Symmetric Crystals
5. Bibliography
The Problem

- The irreducible modules for the symmetric groups over \(\mathbb{C} \) are labelled by partitions.
- Over a field \(F \) of characteristic \(p \), the irreducible modules of the tower of group algebras are labelled by \(p \)-regular partitions.
- Take a element \(\xi \) in a field \(k \) with \(1 + \xi + \cdots + \xi^{e-1} = 0 \). For the tower of cyclotomic Hecke algebras over \(K \), the irreducible modules are labelled by \(e \)-regular multipartitions.

The problem: For \(e > 2 \), we have only a recursive algorithm for constructing \(e \)-regular multipartitions.
Affine Lie Algebras of Type A

- \mathcal{G} - an affine Lie algebra of type A,
- Dynkin diagram a circle,
- $\Lambda_0, \Lambda_1, \ldots, \Lambda_\ell$ - fundamental weights, $\ell = e - 1$
- $\alpha_0, \alpha_1, \ldots, \alpha_\ell$ - simple roots,
- $\delta = \sum \alpha_i$ - the null root.
- $Q_+ = \{\alpha | \alpha = \sum c_i \alpha_i\}$, with content $(c_0, c_1, \ldots, c_\ell)$,
- A corank 1 Cartan matrix

$$A = \begin{bmatrix}
2 & -1 & 0 & \cdots & 0 & -1 \\
-1 & 2 & -1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & -1 & 2 & -1 \\
-1 & 0 & \cdots & 0 & -1 & 2
\end{bmatrix}$$
Kashiwara crystals

Let $e_i, f_i, h_i, i = 0, 1, \ldots, \ell, c$ be a Chevalley basis

Let $\Lambda = a_0 \Lambda_0 + \ldots a_\ell \Lambda_\ell, a_i \in \mathbb{Z}_+$

Let $V(\Lambda)$ be a highest weight representation generated by the f_i from u_\emptyset of weight Λ

Let $P(\Lambda)$ be the sets of weights of weight spaces of $V(\Lambda)$

Let $\max(\Lambda)$ be the set of weights $\eta \in P(\Lambda)$ such that $\eta + \delta \notin P(\Lambda)$.

A Kashiwara crystal $B(\Lambda)$ is

- a labeling of the basis of $V(\Lambda)$
- operations \tilde{e}_i and \tilde{f}_i,
- functions ϕ_i, ϵ_i measuring the distance to the end of the local i-string.
There are three important versions of the Kashiwara crystal in type A:

- by e-regular multipartitions
- by Littelmann paths,
- and by canonical basis elements, in a space called Fock space, with coefficients which are ν-polynomials
There are three important versions of the Kashiwara crystal in type A:

- by e-regular multipartitions
- by Littelmann paths,
- and by canonical basis elements, in a space called Fock space, with coefficients which are v-polynomials

Our general research program concerns the combinatorial relations among all three, but for this talk, we focus on the possibility of passing directly between the e-regular multipartitions and the canonical basis elements. In the process, we also found a result on the Morita equivalence classes of cyclotomic Hecke algebras.
The reduced crystal

We get the *reduced* crystal [AS] with vertices $P(\Lambda)$ by adding edges wherever there is an edge in the underlying Kashiwara crystal, where we take all i-strings parallel to each other. The weights in $P(\Lambda)$ are of the form $\lambda = \Lambda - \alpha$ for some $\alpha \in Q_+$. The highest-weight representation being integrable, all i-strings are of finite length. To each vertex of $P(\Lambda)$ we associate

- The content (c_0, \ldots, c_ℓ) of $\alpha = c_0\alpha_0 + \cdots + c_\ell\alpha_\ell$
- The defect $\text{def}(\lambda) = (\Lambda \mid \alpha) - \frac{1}{2}(\alpha \mid \alpha)$
- The hub $\theta = (\theta_0, \ldots, \theta_\ell)$, where $\theta_i = \langle h_i, \lambda \rangle$

The vertices of defect zero are those equivalent to Λ under the action of the Weyl group W.
Reduced crystal, $e = 2, \Lambda = 3\Lambda_0 + 3\Lambda_1$, with hubs

The reduced crystal for $e = 2, \Lambda = 3\Lambda_0 + 3\Lambda_1$, truncated at degree 13
Chuang and Rouquier [CR] categorification:

- $V(\Lambda) \leftrightarrow \bigoplus \text{Mod}(H_n^\Lambda)$, $n = 0, 1, 2, \ldots$
- $e_i, f_i \leftrightarrow$ restriction and induction functors E_i, F_i
- Weight spaces \leftrightarrow blocks,
- $s_i \in W \leftrightarrow$ derived equivalences,
- s_i acting on end-points of i-string \leftrightarrow Morita equivalence
- $b \in B(\Lambda) \leftrightarrow$ simple modules of H_n^Λ

The simplest but best known example is for $r = 1$, $\Lambda = \Lambda_0$, over a field of characteristic e, where the simple modules of the symmetric groups correspond to e-regular partitions.
The Fundamental Region

We want to show that for a given defect d there are only a finite number of Morita equivalence classes of cyclotomic Hecke algebras, relying on categorification and using combinatorics. So far we can to this for ranks $e = 2, 3$. We start with the following theorem.

Theorem (Barshavsky, Fayers, S., 2013) For any $\eta = \Lambda - \sum_{i=0}^{\ell} b_i \alpha_i$ there is a unique s such that

$$\eta - s\delta \in \text{max}(\Lambda)$$

The proof, which is given for any type of affine Lie algebra, depends on finding a fundamental region in $P(\Lambda)$ from which every element of $\text{max}(\Lambda)$ can be reached by transformations in the normal abelian subgroup T in the decomposition of the Weyl group as

$$W = T \rtimes W^\circ$$
The elements of T are transformations of the form

$$t_{\alpha}(\zeta) = \zeta + r\alpha - ((\zeta|\alpha) + \frac{1}{2}(\alpha|\alpha)r)\delta$$

By the theorem in the previous slide, every vertex in $\text{max}(\Lambda)$ is equivalent by the action of the Weyl subgroup T to a point in the fundamental region and every defect is congruent mod r to a defect in the fundamental region. Thus the elements of $\text{max}(\Lambda)$ correspond one-to-one to points of the integral lattice generated by $\alpha_1, \ldots, \alpha_\ell$.

On a string, $\text{def}(\lambda - k\alpha_i)$ is parabolic in k, so the defects rise to the center, and for a string of length c there can be no defect less than c except at the ends. Lengths of i-strings are determined by θ_i.
The reduced crystal for $e = 3, \Lambda = \Lambda_0 + \Lambda_1 + \Lambda_2$
Maximal Strings

Proposition

For any defect d in a rank 2 or 3 crystal, there is a degree $N(d)$ such that every occurrence of that defect in degree more than $N(d)$ is at the end of a string to a vertex of lower degree.

Proof.

Case $e = 3$: Let $c = r + 2d$. Let N be the maximal degree occurring in a triangle $[c, -d, -d], [-d, c, -d], [-d, -d, c]$. Every hub on or outside the triangle contains a negative θ_i with $\theta_i \leq -d$. Every vertex inside the triangle has degree lower than $N + 1$. Let \bar{d} be the residue of d mod r and set $N(d) = N + 1 + (d - \bar{d})$. Thus every $b \in B(\Lambda)$ of defect d lies on a string leading to a lower degree of length $\geq d$. Since a basis element of defect d cannot be internal, it is at the end of this string.
The canonical basis elements correspond to e-regular multipartitions. In order to generate the e-regular multipartitions, we must choose an ordering of the fundamental weights in Λ,

$$\Lambda = \Lambda_{k_1} + \cdots + \Lambda_{k_r}$$

We will follow Mathas in [M] in requiring $k_1 \leq k_2 \leq \cdots \leq k_r$, where the number of terms, r, in the sum is the level. We can then summarize by setting

$$\Lambda = a_0 \Lambda_0 + \cdots + a_\ell \Lambda_\ell$$

The Young diagram of a defect 0 weight λ will be represented by $Y(\lambda)$. If the m-th partition of λ is nonempty, then we associate to each node in the Young diagram a residue, where the node (i, j) is given residue

$$k_m + j - i$$
Involution of multipartitions

In [Fa], Fayers describes two involutions on the multipartitions:

Definition

If $\lambda = (\lambda^1, \ldots, \lambda^r)$ is a multipartition of rank e and level r, then the *conjugate* λ' of λ is given by $\lambda' = (\lambda^{r'}, \ldots, \lambda^{1'})$, where $\lambda^{i'}$ is the transposed partition of λ^i, corresponding to reflection of the Young diagram in the main diagonal.

Definition

If $\lambda = (\lambda^1, \ldots, \lambda^r)$ is a multipartition of rank e and level r for $\Lambda = \Lambda_{k_1} + \ldots + \Lambda_{k_r}$, then the *diamond* λ^{\diamond} of λ is a multipartition in the crystal for $\hat{\Lambda} = \Lambda_{-k_1} + \ldots + \Lambda_{-k_r}$, whose path is obtained from a path giving λ by replacing each residue by minus that residue.
Fock Space

- \(\mathcal{U} = \mathcal{U}_\nu(\hat{\mathfrak{sl}}(e)) \): quantum enveloping algebra over \(\mathbb{Q}(\nu) \)
- \([n]_\nu = \nu^{n-1} + \nu^{n-3} + \cdots + \nu^{-(n-3)} + \nu^{-(n-1)}\).
- Generators: \(e_i, f_i, h_i \) for \(i \in I = \mathbb{Z}/\mathbb{Z}e \) and a central \(c \).
- If \(\Lambda = \Lambda_{k_1} + \cdots + \Lambda_{k_r} \), set \(s = (k_1, \ldots, k_r) \).

The Fock space \(\mathcal{F}^s \) is a space with basis given by multipartitions consisting of \(r \) partitions. An addable \(i \)-node \(n \) is a node outside \(\lambda \) such that if added it would give a multipartition \(\lambda^n \) and would have residue \(i \). A removable \(i \)-node \(m \) inside a multipartition \(\mu \) is a node at the end of a row or column which would give a multipartition \(\mu_m \) if removed.
Fock Space

The quantum enveloping algebra $\mathcal{U}_\gamma(\hat{sl}(e))$ acts on the Fock space by determining actions for the elements of the Chevalley basis, as follows:

- For an addable node, define $N(n, i) = \#\{\text{addable } i\text{-nodes above } n\} - \#\{\text{removable } i\text{-nodes above } m\}$ and set
 \[
 f_i(\lambda) = \sum_n \nu^{N(n,i)} \lambda^n.
 \]

- For a removable node, define $M(m, i) = \#\{\text{addable } i\text{-nodes below } m\} - \#\{\text{removable } i\text{-nodes below } m\}$.
 \[
 e_i(\mu) = \sum_m \nu^{M(m,i)} \mu_m.
 \]
The divided powers are $e_i^{(k)}$ and $f_i^{(k)}$ and they are given by dividing by the quantum factorials $[k]_v!$. We define \mathcal{F}_A^s to be the subalgebra of \mathcal{F}^s generated by the divided powers from the highest weight vector over A, where coefficients lie in the algebra A of Laurent polynomials in v with integral coefficients. In addition, there is an involution of the quantum enveloping algebra called the bar-involution which fixes e_i, f_i and h_i, but interchanges v and v^{-1}.
Canonical basis

For each e-regular multipartition μ, there is an element $G(\mu)$ of the Fock space \mathcal{F}_A^s that is invariant under the bar involution, and these are called the canonical basis elements. The action of the Chevalley basis elements e_i and f_i on these canonical basis elements is induced from their action on the basis elements of the Fock space. We write

$$G(\mu) = \sum_{\lambda \in P^r} d_{\lambda \mu}(v) \lambda$$
Definition

For a sequence S chosen from a two element ordered set $\{0, 1\}$, the number of inversions, $\text{Inv}(S)$, is the sum of the number of elements 0 appearing before each element 1.

Definition

The shape of a canonical basis element is the number of multipartitions, counting repetitions, for each power of v.

Definition

A vertex v in the reduced crystal is i-external if $\tilde{e}_i(b)$ is zero for every element of $B(\Lambda)$ with the weight corresponding to v.
Lemma

Let \(\mu \) be an \(e \)-regular multipartition for an \(i \)-external vertex of the reduced crystal with \(i \)-string of length \(c \). Let \(S(c, k) \) be the set of sequences of length \(c \) with \(k \) copies of 1 and \(c - k \) copies of 0. For any \(S \in S(c, k) \), let \(\lambda^S \) be the multipartition obtained by adding each node corresponding to a 1. If every multipartitions occurring in \(G(\lambda) \) has \(c \) of addable \(i \)-nodes and no removable nodes, then

\[
\tilde{f}_{i}^{(k)}(G(\mu)) = \sum_{S \in S(c, k)} \sum_{\lambda \in P^r} d_{\lambda \mu} v^{\text{Inv}(S)} \lambda^S
\]

For \(k = c \) and \(S \) the unique sequence with all copies of 1,

\[
G(\mu^S) = \sum_{\lambda \in P^r} d_{\lambda \mu} \lambda^S
\]
In Theorem 2.1 of [Fa], Fayers proves that if $w(\mu)$ is the defect of an e-regular multipartition μ, then

$$\hat{d}_{\lambda', \mu} = v^{w(\mu)} d_{\lambda, \mu}(v^{-1}).$$

This theorem involves constructing two distinct crystals and comparing them. Instead, let $\Lambda = a\Lambda_0 + a\Lambda_1 + \cdots + a\Lambda_\ell$ be symmetric. By using Fayer's \diamond involution, followed by a reshuffling of the tuple s used in the definition of the Fock space, we find that for any path, the path we get by exchanging k with $\ell - k$ has canonical basis elements which by symmetry have the same shape and by the \diamond involution are thus symmetric.
Let us take a completely symmetric crystal,
\[\Lambda = a\Lambda_0 + a\Lambda_1 + \cdots + a\Lambda_\ell. \]

- The canonical basis elements of a symmetric crystal have a symmetric shape.
- For \(e = 2 \), we can give formulae for the canonical basis elements of all weights with defect \(a(k - a) \).
- For \(e = 3 \), we can give formula for canonical basis elements with for weights \(\lambda - k\alpha_i \) with \(0 \leq k \leq a \). Every block of the cyclotomic Hecke algebra is Morita equivalent to one of a finite set of blocks of degree less than some bound \(N(d) \) and the canonical basis elements are easily obtained from those of this finite set.
The Littelmann paths for a given G and Λ can be generated in Sagemath using the function `CrystalOfLSPaths()` written by Mark Shimozono and Anne Schilling. In addition, Travis Scrimshaw implemented an algorithm of Matt Fayers to calculate the canonical basis, named `FockSpace()`.

Our own modification computes the following for a basis element $b \in B(\Lambda)$:

- The multipartition
- The Littelmann path and, optionally, the corner-points
- The canonical basis element
- The set of paths in the reduced crystal leading to b
Bibliography

S. Ariki, V. Kreiman, & S. Tsuchioka, *On the tensor product of two basic representations of \(U_v(\hat{sl}_e) \)*, Advances in Mathematics 218 (2008), 28-86.

Thank you.
Thank you.

THE END